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Diffraction of optical beams with arbitrary profiles by a periodically
modulated layer

R. S. Chu
Ground Systems Group, Hughes Aircraft Company, Pullerton, California 92634

J. A. Kong
Department of Electrical Engineering and Computer Science and Research Laboratory ofElectronics, Massachusetts Institute of Technology,

Cambridge, Massachusetts 02139
(Received 28 April 1979)

The problem of diffraction of optical beams with arbitrary profiles by a periodically modulated
layer is studied for incidence at normal or at the first Bragg angle. It is shown that the far-field
patterns of the nth diffracted order of the transmitted and reflected waves are simply the algebraic
multiplications of the angular spectral amplitude of the beam profile and the transmission and
reflection coefficients for the nth-order diffracted plane wave. Numerical results are illustrated for
six different beam profiles.

INTRODUCTION another dielectric medium with relative permittivity (:j for L

The diffraction of a plane wave by a periodically modulated X.

medium has been treated extensively in the past.'- For a The electric field of an incident beam can be represented
layer bounded by different media on its two sides, the dif- by''
fraction problem for arbitrary angle of incidence has been
studied with a rigorous modal approach by Chu and Kong.4  E1 ,. (xz) = G(i]) expi( , x + z) dil, (2)
A simple second-order coupled-mode approach that yields
closed-form solutions for the reflection and transmission where
coefficients has been given by Kong.5 For a plane wave in-
cident in the vicinity of normal incidence and in the Raman- (2r/) sinll
Nath regime, Lee6 obtained a simple closed-form formula for and
reflection and transmission coefficients. c," =

In a series of previous papers,7  analytical and numerical function )G(0, is t a sp r a m id,

results have been given for the diffraction of optical beams The function ((I.) is the angular spectral amplitude of the
with a Gaussian profile incident near Bragg angles on a pe- incident beam profile at the entrance plane x = 0, i.e..

riodically modulated half-space7 .s or a finite layer.9 Both I
near-field and far-field solutions have also been obtained by ((il) = 2 r Ej,,,(Oz )I- dz. (3)
integrating over an appropriate plane-wave spectrum,9 and
the numerical results qualitatively agree very well with the We let
experimental observations performed by Forshaw."' E,,,tt).z) = F(,z)et''. (4)

In this paper we investigate the diffraction of optical beams where
with arbitrarv profiles incident either normally or at the first
Bragg angle on a finite laver of a periodically modulated me- ) (27rIX)\ (IsinW:' = (270) sintI'
diuin. The far-field patterns of the n th-order reflected and and 0,i'" is the angle of incidence of the beam axis. 0,'"' the angle
transmitted waves are shown to be simply thealgebraic mul- of'refracted beam, and F(z the beam-profile function at x
t iplications of the angular spectral amplitude of the incident 0. Equation (3) becomes
beam profile at the entrance plane and the reflection and
transmission coefficients of the n th-order diffracted plane (;( ) =- - ,, Fzlc--he pd- (5)
waves. Numerical results are illustrated for six different 21 f
beam protiles. The six different beam profiles F(z) and their corresponding

angular spectral functions (;(t) to be considered later are
I. FORMULATIONS FOR INCIDENT, REFLECTED, listed in Table I.
AND TRANSMITTED BEAMS The integral representation (2) for the incident beam ap-

As shown in Fig. 1, we consider a bounded beam incident pears here as a linear superposition ofl plane-wave spectral
on a periodically modulated dielectric layer which is charac- components of the form
terized by a permittivity of the form expi( ,"'x + oz I

(z) = (201 + M cos2rz/d), (1) with amplitude (;(ft.). For each plane-wave component in-

where u. is the relative permittivity of'the slab in the absence cident upon the periodic layer, the reflect ion and the tr;ns-
of modulation. M is the modulation index, and d is the per- mission coefficients for the nith-order wave are given i) h,,1tt
Odicit v. The slab has a thickness 1. and is boduned by a di- and T,,(do). respectively. Therefore, the nth-order trans
electric medium with relative permittivity (I for x <_ 0 and by mitted beam is given by
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Equations (6) and (7) are the field expressions for the trans-
.- . mitted and reflected fields.

As already shown,!' the far-field pattrn(ofa I)arti'ularorder
Refracted is essentially the Fourier transfrm of the aperture field at the
Beam boundary of 'he laver for that parti cular order. The far-field

.. " pattern of the nih-order transmitted beam is given by
*0

o ... . . !',,(() = J E,,,(l..z) expI-il(27r/A)\T' sinO(zldz. (9)

8 - Substituting (6) into (9), we have

IncidentI
Beam - Diffracted P,, (0) = G(Q310)T, (00)

,- Beom

d 2 r 2
- ..... .. X exp i(/ii + 0 - " si ) z dflodz

t== J (;(d0 T,, (w.o)

FIG. 1. Geometrical configuration of the problem. 9 + 2 )dty- -( -i)]1
X exp it +nd x :isin ) zI dzi d/:lo

I',,(x.z) = ..F (;tW)7,,)(lii) expit[,,"(x -L) + 41,z0l. = 2r(; -- ,sin0 - it T,, sinfl n - _

x _> L (13) l)

where 111 (10) we ibserve that the integral in the braces is in f('ct a

5 function. Snilarly, the far-field pat tern ol'he ni ht -order
d,= + n27r/d reflected beam is

and 1_,(t y rl.zep- , in) d.

m = (2r/)-: - EI (o.) X ( SiI df X;3 R,('o

The nIth-order reflected beam is given by-

Er,(x. .z .= f (;(1j3,)R ,, (lo) expi( t', x + 3
>,,z)d, X .. expli ( + d _ X as d

x !5 0 (7) = 7r G \ Usinl - n

where ( - - )

T A B L E I. B e a m p ro file s F (z ) a n d th e ir c o rre s p o n d in g a n g u la r s p e c tra l fu n c tio n s Q(. ) .. .. .. . . . . . . .. . .

(aussian beam t - , t,, ,

Square-wave beam P
, 
w,: = ,, 2t, - t-it,,

I 1 *-,

Triangle-wave beam M 'i w,:' { I ii:1 Il, -1- (- 2I I '.

Two-side exponent ial beam c - I I i :'2... .. ....
I + 12(3. -tH lt',"

One-side exponential beam -- i ':

Lorentzian beam 1 ',. , ,',
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FIG. 4. Amplitudes of the first-order transmitted beams for six different
Ordor beam profiles. (I = (2= (3 = 1.0, X = 0.6328 pm, d

= 6.328 pm, koL
-I"'Order Beam= 700, M = 5 X 10

- 3
. Wo =500, Q= 7.

M =~ 2 1i0-
005-

_1(0)= 2r ; '21 ' ,, 2 r 27

0.r0(1) = 2S(; int + -t \ ( i sint +I. 0 d
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68
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FIG. 2. Transmitted field amplitudes for a normally incident Gaussian where the transmission coefficients 1'o and '-1 have hirt

beam. (r = (2 = (3 = 1.0, A = 06328 pm, d
= 

6.328 pm, koL = 700, Wo given in Ref. 5 as

= irWold = 500, 0= 7.
To = 4kh"(., - (rI)((vlAhh -- '.,) expl- ikL )/l)et.

The far-field pattern for the zeroth-order transmitted beam and

is given by T-1 = 4ki 0((2 - dO)(A. - Bb,0 ) exp(-ikhI.)/)et,
pt() 2 v -. in 2r( . in) (26) (29)

= 2 G (?X V7 sinl) To X v/ sin(i) (2 ) where

and the far-field pattern for the Bragg-scattered beam by Det = (a2&,, - aIBaa)(aYAi, -

- (V2(Aab - &a,)(Aba - Bb.) (30)

0.40 = 1(13 1 2 2211/21, (1])

a2 = M 2- 2,- - 2- I(-t -j302)2 + (Mkj, 2,)
211/21, (32)

030 o A .=k M21I+ 1+ k 1.
0 Order Beam = k F,,

101-1)t 
Order Seem M'5x 10-

3  k

025 X lexp (-ik 2L) - R2fR2. exp(Uk')I. (33)

0.20e B,p(-ik+ + 2Lk
EkJ k 0)r

X Rexp(-ik2L) - R, exp(ikS,L)J, (34)

. o k," - k
00 5 , kr--~)f t)C7

r! = k p,-d= a,b, ij = 1,2.3, (35)to- M e 4. k?

/ o'"o,0 ,k Orf S J = ko%/7'jcosO = v/(2 r/X_) - = 1 rr7 (36)
0 05 

If 0 ,

000 k = (2 -0tt/2

-006 -0.04 -0.02 000 002 004 006
AS: 0or *-6, (do r,,) k' = l- I (/21)Ma'. 2 - (111,1 (3)

FIG.3 Reflectedfiedaml liudesforanormlallyncldetGausslianbeam. = (kOf(a- #)I/' = t, (40)

I,- 2 a = 1.0, A f 0.6328 Mm, d= 6.328 im, k0L = 700. Wo 500, (14C3 - -
=  (41)f;. h k 2('. 02)12-
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00 -Gaussian Beam profile and are shown in Figs. 6 and 7. The slab width has

-0" Square -wove i34dm - been chosen for two cases, namely, L D 1/4 and D 1/2, and
007 Tr anll- wave Beam D I is defined as

-2-Side Exp Beom 2
00- - Side Eiip Beam D cotiW' (42)
006 . - -Lorentzaon Beam 4W 7

whereI005
q 2(/= M2

v (2dk

0 2The meaning of' I is Ihat, fo)r a slab widt h L1 ) = )/2 and

0 C)) -for a plane wave incident at exactly the first Bragg angle,
00i.complete conversion lof energy occurs from the zeroth-order

0 00~, wave into the Bragg-scattered wave. The zeroth-order beams
-~ - for 1, I/2 for six different beam plrof iles are shown in Fig.

0 (61 0 120 - 0080 - 0040 0000 0040 008*0 020 5 and the Bragg -scat tered beams for 1. = 0J1/2 for six different
A 6 6- a (3 (degrees) beam profiles are shown in lFig. 6. It is seen from Fig. 5that

FIG5. Zeroth-order transmitted beams for L = D,/2. M = I X 10-4,( all the beams have adeepnmill at the beamncenter and that t he
= 1-0. 2.25, (3 = 3.0, X = 0.6328 Mm, d = 1.2656 j*m. D, 8.3193 square-wave beam profile gives high side-lobe ripples while
mm.l 500. (P" =14.47750, tl= 8.29890. the Lorent-zian beam profile gives wide beam width for the

zeroth-order beam. Tlhe physical reason for these deep nulls

and k11 = 27r/,\. is that, at 1. = 01~/2, (fhe cent ral port ionls of the beam spectra
of the zero-order waves have completely converted their

By substituting (28) and (29) into (26) and (27), the far-field energies into the Bragg-si-attered waves, which results in a
patterns for the zeroth-order transmitted beam and the depletion of energies from their beamn-center portions, as
Bragg-scattered b~eam are obtained for a Gaussian beam shown. For the Bragg-scaftered beams, it is seen from Fig.

0.08- Gaussian Beam
-Square-wave Beam

0.07----- Triangle- wave Beam
---2 -Side E xpBeam

ji~ --- SideEp. Beam
0.06- . --- Lorentzian Beam

0.05-

0.04-I FIG. 6.ragg-centered beams for L D ,/2. M
1X 10, (1 = 1 0, (2 = 2.25. t3 = 30 X = 0 6328

O. Irum. d =1.2656 pm. D, = 83193mm. Wo 500).
EO0.03- -14 47750 and 1(, 8 29890

T 0.02-

-0.160 -0.120 -0080 -00 0.000 0.040 0.080 0.120
A82 8-89 (degrees)
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